Theory of equations

1. (a) Let $p(x) = x^4 + 4x^3 - 8x^2 - 1$, then $p'(x) = 4x^3 + 12x^2 - 16x = 4x(x+4)(x-1)$

...

$\mathbf{x} = -\mathbf{x}$	4, 0, 1 are ro	oots of the equ	ation $p'(x) =$	= 0		
	Х	$-\infty$	-4	0	1	$+\infty$
	p(x)	$+\infty$	-9	-1	-4	$+\infty$

 $\therefore \quad \text{There is one real root with} \quad x < -4 \quad \text{and another with} \quad x > 1.$ There is no real root with -4 < x < 1.

 $\label{eq:since} \begin{array}{lll} \text{Since} & p(-5) < 0 & , p(-6) > 0 & \mbox{ and } & p(1) < 0 & \mbox{ and } & p(2) > 0 \; . \end{array}$

There are two real roots α , β for p(x) = 0 with $-6 < \alpha < -5$ and $1 < \beta < 2$.

(b) Let $p(x) = 8x^5 - 5x^4 - 40x^3 - 50$, then $p'(x) = 40x^4 - 20x^3 - 120x^2 = 20x^2(2x+3)(x-2)$ $\therefore x = -3/2, 0, 2$ are roots of the equation p'(x) = 0

х	-∞	-3/2	0	2	$+\infty$
p(x)	∞	-	-	_	$+\infty$

 \therefore There is one real root with x > 2.

Since p(3) < 0, p(4) > 0, there is one real root α for p(x) = 0 with $3 < \alpha < 4$.

2. (a) Let $p(x) = x^4 + 2x^2 + 3x - 1$.

The number of sign change for p(x) is 1.

By the Decartes' rule of sign, there is at most one positive root.

 $p(-x) = x^4 + 2x^2 - 3x - 1$.

The number of sign change for p(-x) is 1.

By the Decartes' rule of sign, there is at most one negative root.

There are at most two real roots.

Since deg[p(x)] = 4, there is at least 2 complex roots.

 $p(-2) < 0 \;, \quad p(-1) < 0 \quad and \quad p(0) < 0 \;, \quad p(1) > 0 \;.$

 $\therefore \quad \text{There are } 2 \quad \text{complex roots and} \quad 2 \quad \text{real roots} \quad \alpha \,, \beta \quad \text{for} \quad p(x) = 0 \quad \text{with} \\ -2 < \alpha < -1 \quad \text{and} \quad 0 < \beta < 1 \,.$

(b) Let
$$p(x) = x^5 - 2x^3 + x - 10$$
, then $p'(x) = 5x^4 - 6x^2 + 1 = (5x^2 - 1)(x^2 - 1)$

 $\therefore \quad x = -1, -\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}}, 1 \quad \text{are roots of the equation} \quad p'(x) = 0$ $\boxed{\begin{array}{c|c|c|c|c|c|c|c|c|} x & -\infty & -1 & -\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 1 & +\infty \\ \hline p(x) & -\infty & - & - & - & - & +\infty \end{array}}$

 \therefore There is one real root with x > 1.

Since p(1) < 0, p(2) > 0, there is one real root α for p(x) = 0 with $1 < \alpha < 2$.

3.
$$\alpha, \beta, \gamma$$
 are the roots of the equation $x^3 - px + q = 0$ (1)
 $\alpha + \beta + \gamma = 0$ (2) $\alpha\beta + \beta\gamma + \gamma\alpha = -p$ (3) $\alpha\beta\gamma = -q$ (4)
Now, $(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta = \alpha^2 + \beta^2 + \gamma^2 - \gamma^2 - \frac{2\alpha\beta\gamma}{\gamma} = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) - \gamma^2 - \frac{2\alpha\beta\gamma}{\gamma}$
 $= 0^2 - 2(-p) - \gamma^2 - \frac{2(-q)}{\gamma} = 2p - \gamma^2 + \frac{2q}{\gamma}$, by (1) - (4).
 \therefore $(\alpha - \beta)^2, (\beta - \gamma)^2, (\gamma - \alpha)^2$ are roots of a new equation formed by putting:
 $y = 2p - x^2 + \frac{2q}{x} \Leftrightarrow xy = 2px - x^3 + 2q \Leftrightarrow (x^3 - px + q) + xy - px = 3q \Leftrightarrow xy - px = 3q \Leftrightarrow x = \frac{3q}{y - p}$ (5)
Substitute (5) in (1), $\left(\frac{3q}{y-p}\right)^3 - p\left(\frac{3q}{y-p}\right) + q = 0 \Leftrightarrow y^3 - 6py^2 + 9p^2y + (27q^2 - 4p^3) = 0$ (6)
The product of roots of (6) $D = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2 = -(27q^2 - 4p^3) = 4p^3 - 27q^2$ (7)
Since (1) is of degree 3, the condition of roots are shown below:
(i) 3 real and distinct roots $\Leftrightarrow D > 0$.
(ii) 1 real double root and one other real root or 1 triple root $\Leftrightarrow D = 0$.
(iii) 2 complex roots and 1 real roots $\Leftrightarrow D < 0$.

(w.l.o.g. let
$$\alpha = a + bi$$
, $\beta = a - bi$, $\gamma = c$ and substitute in (7))

$$\therefore \quad \text{The roots of} \quad (1) \quad \text{should be real} \quad \Leftrightarrow \quad D \ge 0 \quad \Leftrightarrow \quad 4p^3 - 27q^2 \ge 0 \; .$$

4.
$$x^2 - 3x + 4 = \lambda(1 + 2x) \iff x^2 - (3 + 2\lambda)x + (4 - \lambda) = 0$$

This quadratic equation has real roots $\iff \Delta = (3 + 2\lambda)^2 - 4(4 - \lambda) \ge 0$

$$\Leftrightarrow 4\lambda^{2} + 16\lambda \ge 0$$

$$\Leftrightarrow \lambda \le \frac{4 - \sqrt{21}}{2} \quad \text{or} \qquad \lambda \ge \frac{4 + \sqrt{21}}{2}$$

$$x^{2} - 3x + 4 = \lambda(1 + 2x)$$

$$\Leftrightarrow \begin{cases} y = x^{2} - 3x + 4 & \dots(1) \\ y = \lambda(1 + 2x) & \dots(2) \end{cases}$$

(2) is a pencil of straight lines passing through

the point
$$\left(-\frac{1}{2},0\right)$$
.

(1) and (2) cut each other only when

$$\lambda \le \frac{4 - \sqrt{21}}{2}$$
 or $\lambda \ge \frac{4 + \sqrt{21}}{2}$

as shown in the graph.

When $\lambda = 3$, (2) becomes y = 3 + 6x. When $\frac{9-\sqrt{77}}{2} < x < \frac{9+\sqrt{77}}{2}$ (0.11 < x < 8.89), 3 + 6x greater than $(x^2 - 3x + 4)$.

5. Let
$$y = (x - 1)^2 (x - a) + t$$
 $(a > 1)$
 $y' = (x - 1) (3x - 2a - 1)$, $y'' = 2(3x - a - 2)$

For critical values, y' = 0. $\therefore x = 1$ or $x = \frac{2a+1}{3}$.

$$y''|_{x=1} = 2(1-a) < 0$$
 since $a > 1$. \therefore y is a max. when $x = 1$, $y_{max} = t$.

$$y''|_{x = \frac{2a+1}{3} = 2(a-1) > 0}$$
 since $a > 1$. \therefore y is a min. when $x = \frac{2a+1}{3}$, $y_{\min} = -\frac{4(a-1)^{3}}{27} + t$

As $x \to -\infty$, $y \to -\infty$ and as $x \to +\infty$, $y \to +\infty$. The equation y = 0 has three real roots $\Leftrightarrow y_{max} > 0 \land y_{min}$

$$\Leftrightarrow \quad t > 0 \quad \wedge \quad -\frac{4(a-1)^3}{27} + t < 0 \quad \Leftrightarrow \quad 0 < t < \frac{4(a-1)^3}{27}$$

$$y = (x-1)^2 (x-a) + t \quad \Leftrightarrow \quad y = x^3 - (2+a)x^2 + (1-2a)x + (a+t)$$

$$\therefore \quad \alpha + \beta + \gamma = 2 + a$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 1 - 2a$$

$$\alpha\beta\gamma = a + t$$

 $\therefore \quad \beta \gamma + \gamma \alpha + \alpha \beta - 2(\alpha + \beta + \gamma) + 3$ = 1 - 2a - 2(2 + a) + 3 = 0

$$y_{min} < 0$$

 $(-1)^{3}/7$
 $(a + t)$
 $(-1)^{3}/7$
 $(a + t)^{3}/7$
 $(a + t)^{$

||

6. Let $x = \frac{p}{q}$ be a rational root of $ax^2 + bx + c = 0$, where $p, q \in \mathbb{Z}$, H.C.F (p,q) = 1, $p, q \neq 0$.

By the rational zero theorem, p|c and q|a.

Since a, c are odd and $p, q \neq 0$, p, q are odd.

However $ax^2 + bx + c = 0$ \Rightarrow $a\left(\frac{p}{q}\right)^2 + b\left(\frac{p}{q}\right) + c = 0$ \Rightarrow $ap^2 + bpq + cq^2 = 0$ $(q \neq 0)$

There is a contradiction since ap^2 , bpq, cq^2 are all odd so their sum is also odd, and must not be equal to 0.

- 7. (a) $P(x) \equiv a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ $P(p) - P(q) = a_0 (p^n - q^n) + a_1 (p^{n-1} - q^{n-1}) + ... + a_{n-1} (p - q)$ $= (p - q) [a_0 (p^{n-1} + p^{n-2}q + ... + q^{n-1}) + a_1 (p^{n-2} + p^{n-3}q + ... + q^{n-2}) + ... + a_{n-1}]$ Since a_0 , a_1 , ..., a_n , p, q are integers, the second factor in the above expression is an integer. The first factor (p - q) is an even integer if p, q are both even integers (or both odd integers). $\therefore P(p) - P(q)$ is even.
 - (b) Suppose, on contrary, x = q is an integral root of P(x) = 0. Then P(q) = 0. (i) If q is odd, then P(1) - P(q) is even by (a).
 - But P(1) P(q) = P(1) 0 = P(1), which is odd by given.
 - (ii) If q is even, then P(0) P(q) is even by (a). But P(0) - P(q) = P(0) - 0 = P(1), which is odd by given.

In both cases, there is a contradiction.

8. If
$$\alpha$$
 is the root of the equation $ax^2 + bx + c = 0$, then $a\alpha^2 + b\alpha + c = 0$ and $a\alpha^2 = -b\alpha - c \dots (1)$
 $A\alpha^2 + B\alpha + C$ is rational $\Leftrightarrow a(A\alpha^2 + B\alpha + C) = A(-b\alpha - c) + Ba\alpha + Ca$, by (1)
 $= (-Ab + Ba) \alpha - Ac + Ca$ is rational
 $\Leftrightarrow -Ab + Ba = 0$, since α is irrational and all other constants are rational.
 $\Leftrightarrow Ab = Ba$ (2)
From (1), $a\alpha^3 = -b\alpha^2 - c\alpha$ (3)
 $A\alpha^3 + B\alpha^2 + C\alpha$ is rational $\Leftrightarrow Aa\alpha^3 + Ba\alpha^2 + Ca\alpha = A(-b\alpha^2 - c\alpha) + Ba\alpha^2 + Ca\alpha$, by (2)
 $= (Ba - Ab) \alpha^2 + (Ca - Ac) \alpha = (Ca - Ac) \alpha$ is rational, by (3)
 $\Leftrightarrow Ca - Ac = 0$, since α is irrational and all other constants are rational.
 $\Leftrightarrow Ac = Ca$
Let $p(x) = a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n$. Then by Division Algorithm,
 $p(x) = (ax^2 + bx + c) q(x) + mx + n$, where m, n are rational constants.
Now, $p(x)$ is rational $\Leftrightarrow (a\alpha^2 + b\alpha + c) q(\alpha) + m\alpha + n$ is rational.
 $\Leftrightarrow m\alpha + n$ is rational , given that $a\alpha^2 + b\alpha + c = 0$
 $\Leftrightarrow m = 0$, since α is irrational
 $\Leftrightarrow p(x) = (ax^2 + bx + c) q(x) + n$, that is, the remainder is independent of x.

9. Let
$$y = p(x) = x^3 - px + q$$
 then $p'(x) = 3x^2 - p$, $p''(x) = 6x$

Since $\lim_{x \to +\infty} p(x) = +\infty$, $\lim_{x \to -\infty} p(x) = -\infty$, p(x) = 0 has at least one real root.

For stationary points,
$$p'(x) = 0$$
, $3x^2 - p = 0 \implies x = \pm \sqrt{\frac{p}{3}}$ (1)

From (1), There are two turning points if p > 0.

Since
$$p''\left(+\sqrt{\frac{p}{3}}\right) > 0$$
, y is a min when $x = +\sqrt{\frac{p}{3}}$. $y_{min} = q - \frac{2p}{3}\sqrt{\frac{p}{3}}$,
Since $p''\left(-\sqrt{\frac{p}{3}}\right) > 0$, y is a max when $x = -\sqrt{\frac{p}{3}}$. $y_{max} = q + \frac{2p}{3}\sqrt{\frac{p}{3}}$,

 $\therefore \quad p(x) = 0 \quad \text{has} \quad 3 \quad \text{real roots (or 1 double real root and 1 real root)} \quad \Leftrightarrow \quad y_{\text{min}} \leq 0 \quad \text{and} \quad y_{\text{max}} \geq 0$

$$\Leftrightarrow \quad q - \frac{2p}{3}\sqrt{\frac{p}{3}} \le 0 \quad \text{and} \quad q + \frac{2p}{3}\sqrt{\frac{p}{3}} \ge 0 \quad \Leftrightarrow \left(q - \frac{2p}{3}\sqrt{\frac{p}{3}}\right) \left(q + \frac{2p}{3}\sqrt{\frac{p}{3}}\right) \le 0$$

$$\Leftrightarrow \quad 4p^3 \ge 27q^2$$

 $y \text{ has only one real root} \qquad \Leftrightarrow \quad [y_{min} > 0 \quad and \quad y_{max} > 0] \quad or \quad [y_{min} < 0 \quad and \quad y_{max} < 0]$

$$\Leftrightarrow \left(q - \frac{2p}{3}\sqrt{\frac{p}{3}}\right) \left(q + \frac{2p}{3}\sqrt{\frac{p}{3}}\right) > 0 \qquad \Leftrightarrow \quad 4p^3 < 27q^2.$$

(a) $x^3 - 2x + 7 = 0$, Since $4p^3 = 4(2)^3 = 32$, $27q^2 = 27(7)^2 = 1323$, $\therefore 4p^3 < 27q^2$. The equation has only one real root.

(b)
$$3x^{3} + 4x - 2 = 0$$
. Since $4p^{3} = 4(-4/3)^{3} = -256/27$, $27q^{2} = 27(-2/3)^{2} = 12$, $\therefore 4p^{3} < 27q^{2}$.
The equation has only one real root.
(c) $4x^{3} - 7x + 3 = 0$. Since $4p^{3} = 4(7/4)^{3} = 343/16$, $27q^{2} = 27(3/4)^{2} = 243/16$, $\therefore 4p^{3} > 27q^{2}$.
The equation has 3 real roots.
10. (a) $x^{3} + Px^{2} + Qx + R = 0$ (1)
Put $x = X + k$, where k is a constant.
 $(X + k)^{3} + P(X + k)^{2} + Q(X + k) + R = 0$ (2)
In (2), the coeff. of x^{2} -term is $(3k + P)$.
By putting $3k + P = 0$ or $k = -\frac{P}{3}$, then the transformation $x = X - \frac{P}{3}$ can transform (1)
into (2) where x^{2} -term disappears.
(b) $x^{3} - 15x = 126$ (3) $x = y + z$ (4)
 $(4)^{4}(3), (y + z)^{3} - 15(y + z) = 126 \Leftrightarrow y^{3} + z^{3} + 3y^{2}z + 3yz^{3} - 15(y + z) = 126$
 $\Rightarrow y^{3} + z^{3} + (3yz - 15)(y + z) = 126 \Leftrightarrow y^{3} + z^{3} + (3yz - 15)x = 126$ (5)
If further we choose $3yz - 15 = 0$, or $yz = 5$ (6)
(5) becomes: $y^{3} + z^{3} = 126$ (7)
From (6), $(y^{3})(z^{3}) = 125$ (8)
From (7) and (8), y^{3} and z^{5} are roots of a quadratic equation $t^{2} - 126 t + 125 = 0$ (9)
If y^{3} and z^{5} are both real and y_{0}, z_{0} are their real roots, possible values for y, z are y_{0} .
 $wy_{0}, w^{3}y_{0}$ and z_{0} woz_{0}, w^{2}n.
By (6), the product yz must be real. Therefore the only combinations consistent with this give, as
the three roots of the cubic, by (4): $y_{0} + z_{0}$, $wy_{0} + w^{2}z_{0}$, $w^{2}y_{0} + wz_{0}$.
Similarly for the eq. $x^{3} - 15x = 126$.
From (9), $t = 1$ or 125 . Take $y_{0}^{3} = 1$, $z_{0}^{3} = 125$, we have $y_{0} = 1$, $z_{0} = 5$.
Then the solutions are $1 + 5$, $w + 5w^{2}$, $w^{2} + 5w$.
11. (a) $x^{2} + px + q = 0 \Rightarrow \alpha + \beta = -p$, $\alpha\beta = q$ (1)
 $(a^{3} - \beta)(\beta^{3} - \alpha) = a^{3}\beta^{3} + \alpha\beta - (a^{4} + \beta^{3}) = \alpha(\beta)^{3} + \alpha\beta - [(a + \beta)^{4} - 4\alpha\beta(\alpha^{2} + \beta^{2}) - 6a^{2}\beta^{2}]$
 $= (\alpha\beta)^{3} + \alpha\beta - [(\alpha + \beta)^{4} - 4\alpha\beta[(\alpha + \beta)^{2} - 2\alpha\beta] - 6(\alpha\beta)^{3}] = q^{2} + q - ((-p)^{4} - 4q[(-p)^{2} - 2$

(b)
$$x + px + q = 0$$
 \Rightarrow $\alpha + p = p$, $\alpha p = q$ \dots (1)
 $(t\alpha + \beta) + (t\beta + \alpha) = (1 + t) (\alpha + \beta) = (1 + t) (-p) = -p(1 + t)$
 $(t\alpha + \beta) (t\beta + \alpha) = t(\alpha^2 + \beta^2) + \alpha\beta + t^2\alpha\beta = t[(\alpha + \beta)^2 - 2\alpha\beta] + \alpha\beta + t^2\alpha\beta = t[(-p)^2 - 2q] + q + t^2q$
 $= t^2q + t(p^2 - 2q) + q$
Hence the new equation is $x^2 + p(1 + t) x + t^2q + t(p^2 - 2q) + q = 0$
If $p^2 - 4q < 0$, $p \neq 0$, then (1) has two complex conjugate roots α and β .

Since p,q are real, and α and β are complex conjugates ,

(1) If $t \neq 1$ and is real, $(t\alpha + \beta)$, $(t\beta + \alpha)$ are complex numbers. (2) If t = 1, $(t\alpha + \beta)$, $(t\beta + \alpha)$ are equal to -p. Since $p \neq 0$, therefore $(t\alpha + \beta)$, $(t\beta + \alpha)$ are different from zero.

12. (a)
$$p^2$$
 and q are the roots of $x^2 + bx + q = 0$ (1)
 $\therefore p^4 + p^2 b + q = 0$ (2) , $q^2 + bq + q = 0$ (3)
Case (1), If $q \neq 0$, then from (3), $q + b + 1 = 0 \Rightarrow q = -(b + 1)$ (4)
 $(4) \downarrow (2), p^4 + p^2 b + -(b + 1) = 0 \Rightarrow (p^2 + b + 1) (p^2 - 1) = 0$
 $\therefore p^2 = -(b + 1)$ or $p^2 = 1$
 $\therefore p = \pm \sqrt{-(b + 1)}$ or $p = \pm 1$.
Case (2), If $q = 0$, then (2) becomes $p^4 + p^2 b = 0 \Rightarrow p^2 (p^2 + b) = 0$

Case (2), If
$$q = 0$$
, then (2) becomes $p^2 + p^2 b = 0 \implies p^2 (p^2 + b)$
 $\therefore p = 0$ or $\pm \sqrt{-b}$

(b) The equation
$$x^2 + bx + c = 0 \implies \alpha + \beta = -b$$
, $\alpha\beta = c$ (1)

$$\frac{1}{1+\alpha^2} + \frac{1}{1+\beta^2} = \frac{\alpha^2 + \beta^2 + 2}{(1+\alpha^2)(1+\beta^2)} = \frac{(\alpha+\beta)^2 - 2\alpha\beta + 2}{1+(\alpha+\beta)^2 - 2\alpha\beta + (\alpha\beta)^2} = \frac{b^2 - 2c + 2}{1+b^2 - 2c + c^2}$$

$$\frac{1}{1+\alpha^2} \frac{1}{1+\beta^2} = \frac{1}{1+b^2 - 2c + c^2}$$

$$\therefore \text{ The new equation is } (1+b^2 - 2c + c^2)x^2 + (2c - 2 - b^2)x + 1 = 0$$

$$\text{ If } b = 1 \text{ and } c = -1 \text{ , then the given equation is } x^2 + x - 1 = 0 \text{ , with roots } x = \frac{-1 \pm \sqrt{5}}{2}$$

$$\text{ The new equation is } 5x^2 - 5x + 1 = 0, \text{ with roots } x = \frac{5 \pm \sqrt{5}}{10}.$$

13. Let
$$\frac{\alpha}{r}$$
, α, αr be the roots of $x^3 + 3x^2 + bx + c = 0$ (1)
Then $\alpha \left(\frac{1}{r} + 1 + r\right) = -3$ (2) , $\alpha^2 \left(\frac{1}{r} + 1 + r\right) = b$ (3) , $\alpha^3 = -c$ (4)
(3)/(2), $\alpha = -\frac{b}{3}$ (5) , (5)↓(4), $c = \frac{b^2}{27}$ (6)
(6)↓(1), $x^3 + 3x^2 + bx + \frac{b^2}{27} = 0$. From (5) and division, $\left(x + \frac{b}{3}\right) \left[x^2 + \left(3 - \frac{b}{3}\right)x + \frac{b^2}{9}\right] = 0$
 $\therefore x = -\frac{b}{3}$ or $x = \frac{-\left(3 - \frac{b}{3}\right) \pm \sqrt{\left(3 - \frac{b}{3}\right)^2 - \frac{4b^2}{9}}}{2}$ (7)
In (7), $\Delta = \left(3 - \frac{b}{3}\right)^2 - \frac{4b^2}{9} = 9 - 2b + \frac{b^2}{9} - \frac{4b^2}{9} = \frac{27 - 6b - b^2}{3}$ (8)

From (5), Since α is an integer and $\alpha \neq 0$, b must be a non-zero integer divisible by 3 (9) In (8), Since the roots are integers, $\Delta > 0$

$$\Rightarrow b^2 + 6b - 27 = (b+9)(b-3) < 0 \Rightarrow -9 < b < 3 \qquad \dots (10)$$

The only b satisfying (9) and (10) is that $b = -6$ and $\Delta = 9$.
From (7), $x = 2, -1, -4$.

14.
$$x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0 = 0$$
 (1)
z is a root of (1), $z^4 + a_3 z^3 + a_2 z^2 + a_1 z + a_0 = 0$ (2)

1/z is a root of (1),
$$(1/z)^4 + a_3 (1/z)^3 + a_2(1/z)^2 + a_1(1/z) + a_0 = 0$$

$$\Rightarrow a_0 z^4 + a_1 z^3 + a_2 z^2 + a_3 z + 1 = 0 \Rightarrow z^4 + \left(\frac{a_1}{a_0}\right) z^3 + \left(\frac{a_2}{a_0}\right) z^2 + \left(\frac{a_3}{a_0}\right) z + \left(\frac{1}{a_0}\right) z = 0 \quad \dots \quad (3)$$

Since z and 1/z are roots, (2) and (3) are identical.

By comparing coefficients of constant terms of (2) and (3), $a_0 = \frac{1}{a_0} \Rightarrow a_0^2 = 1 \Rightarrow a_0 = \pm 1$

Case (1), When $a_0 = 1$, $a_1 = a_3$ (by comparing coeffs of x^2 -terms) Case (2), When $a_0 = -1$, $a_1 = -a_3$, $a_2 = 0$ (by comparing coeffs of x^3 -terms and x^2 -terms) \therefore The necessary and sufficient conditions are : $[(a_0 = 1, a_1 = a_3) \text{ or } (a_0 = -1, a_1 = -a_3, a_2 = 0)]$ Put $p(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ For Case (2), $p(1) = 1 + a_3 + a_2 + a_1 + a_0 = 0$, $p(-1) = 1 - a_3 + a_2 - a_1 + a_0 = 0$.

 \mathbf{r}

 \therefore (x-1)(x+1) is a factor of p(x) by Factor Theorem.

Division of p(x) by (x-1)(x+1) gives a quadratic factor and the problem reduces to solving quadratic equation.

For Case (1), equation (1) reduces to $x^4 + a_1 x^3 + a_2 x^2 + a_1 x + 1 = 0$

$$\Rightarrow x^{2} + a_{1}x + a_{2} + \frac{a_{1}}{x} + \frac{1}{x^{2}} = 0 \Rightarrow \left(x^{2} + \frac{1}{x^{2}}\right) + a_{1}\left(x + \frac{1}{x}\right) + a_{2} = 0 \qquad \dots \qquad (4)$$

$$Put \quad y = x + \frac{1}{x} \qquad \dots \qquad (5)$$

Then $x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)^{2} - 2 = y^{2} - 2$ (4) becomes $y^{2} - 2 + a_{1}y + a_{2} = 0$ or $y^{2} - 2 + a_{1}y + (a_{2} - 2) = 0$ (6) (6) is a quadratic and let y_{1} and y_{2} be the roots. From (5), we have: $x^{2} - y_{1}x + 1 = 0$ and $x^{2} - y_{2}x + 1 = 0$ (7)

which are quadratic equations in x and (7) gives the roots of (1).

15.
$$x^4 - s_1 x^3 + s_2 x^2 - s_3 x + s_4 = 0$$
 (1)
Writing Σ as symmetric sum then

writing
$$\Sigma$$
 as symmetric sum, then
 $\Sigma \alpha = s_1 \quad \dots \quad (2) \quad , \quad \Sigma \alpha \beta = s_2 \quad \dots \quad (3) \quad , \quad \Sigma \alpha \beta \gamma = s_3 \quad \dots \quad (4) \quad , \quad \alpha \beta \gamma \delta = s_4 \quad \dots \quad (5)$
 $\Sigma (\alpha \beta + \gamma \delta) = \Sigma \alpha \beta = s_2 \qquad \qquad \dots \quad (6)$
 $\Sigma (\alpha \beta + \gamma \delta) (\alpha \gamma + \beta \delta) = \Sigma \alpha^2 \beta \gamma = (\Sigma \alpha) (\Sigma \alpha \beta \gamma) - 4 \alpha \beta \gamma \delta = s_1 s_3 - 4 s_4 \quad \dots \quad (7)$
 $(\alpha \beta + \gamma \delta) (\alpha \gamma + \beta \delta) (\alpha \delta + \beta \gamma) = \Sigma \alpha^3 \beta \gamma \delta + \Sigma \alpha^2 \beta^2 \gamma^2 = (\alpha \beta \gamma \delta) \Sigma \alpha^2 + [(\Sigma \alpha \beta \gamma)^2 - 2\Sigma \alpha^2 \beta^2 \gamma \delta]$
 $= (\alpha \beta \gamma \delta) [(\Sigma \alpha)^2 - 2\Sigma \alpha \beta] + [(\Sigma \alpha \beta \gamma)^2 - 2\alpha \beta \gamma \delta \Sigma \alpha \beta] = s_4 [s_1^2 - 2s_2] + [s_3^2 - 2s_4 s_2] = -(4s_2 s_4 - s_1^2 s_4 - s_3^2) \dots (8)$
From (6), (7), (8), the required cubic equation is

Supposing that methods of solving cubic equation are known,

(9) is solved and let the roots be y_1, y_2 and y_3 . Then: $\alpha\beta + \gamma\delta = y_1$ (10) , $\alpha\gamma + \beta\delta = y_2$ (11) , $\alpha\delta + \beta\gamma = y_3$ (12) From (5), $(\alpha\beta)(\gamma\delta) = s_4$ (13) From (10) and (13), $\alpha\beta$ and $\gamma\delta$ are roots of the quadratic equation : $z^2 - y_1z + s_4 = 0$ (14) Suppose (14) is solved, let the roots be $z_1 = \alpha\beta$, $z_2 = \gamma\delta$ (15) From (3), $\gamma\delta(\alpha + \beta) + \alpha\beta(\gamma + \delta) = s_3 \iff z_2 (\alpha + \beta) + z_1 (\gamma + \delta) = s_3$ (16) From (2), $(\alpha + \beta) + (\gamma + \delta) = s_1$ (17) (17) and (18) are simultaneous equation with unknowns $(\alpha + \beta)$, $(\gamma + \delta)$.

Let the equations be solved and $k_1 = \alpha + \beta$, $k_2 = \gamma + \delta$ (18) (15), (16) form two quadratic equations for which α , β , γ , δ can be found.

Note that if (11) or (12) is used instead of (10), the solution is the same due to the arbitrary use of the notation α , β , γ , δ for the four roots of (1).

16. (a) We use induction on k that $x^{k} + x^{-k}$ can be expressed as a polynomial $p_{k}(z)$ in $z = x + x^{-1}$. The proposition is obviously true for k = 1 where $p_{1}(z) = z$. For k = 2, $x^{2} + x^{-2} = (x + x^{-1})^{2} - 1 = z^{2} - 2$ and the proposition is true for k = 2. Assume the proposition is true for $k \le n$ where $n \in \mathbb{N}$. For k = n + 1, $x^{(n+1)} + x^{-(n+1)} = (x^{n} + x^{-n})(x + x^{-1}) - [x^{(n-1)} + x^{-(n-1)}]$ $= p_{n}(z) p_{1}(z) - p_{n-1}(z)$, by inductive hypothesis. Putting $p_{n}(z) = z$, (z) = z, (z) = z, (z), then the proposition is clear true for |k| = n + 1.

 $\begin{array}{ll} \text{Putting} & p_{n+1}(z) = p_n(z) \; p_1(z) - p_{n-1}(z) \; \text{, then the proposition is also true for} \quad k=n+1.\\ \text{By the Principle of Mathematical Induction, the proposition is true} \quad \forall k \in \mathbb{N} \; . \end{array}$

(b)
$$x^{6} + ax^{5} + bx^{4} + cx^{3} + bx^{2} + ax + 1 = 0$$
 (1)

$$(x^{3} + x^{-3}) + a(x^{2} + x^{-2}) + b(x + x^{-1}) + c = 0 \qquad (2)$$

Putting $z = x + x^{-1}$, then (1) becomes $(z^{3} - 3z) + a + bz + c = 0$.
or $z^{3} = az^{2} + (b - 3)z + (c - 2a) = 0 \qquad (3)$

$$\therefore$$
 If α is a root of the polynomial equation (1), then $\alpha + \alpha^{-1}$ is a root of (2)

(c)
$$x^{4} + 4x^{3} + 5x^{2} + 4x + 1 = 0 \iff (x^{2} + x^{-2}) + 4(x + x^{-1}) + 5 = 0$$
 (4)
Putting $z = x + x^{-1}$, then (4) becomes $(z^{2} - 2) + 4z + 5 = 0$
or $z^{2} + 4z + 3 = 0 \iff (z + 3)(z + 1) = 0$
 $z = x + x^{-1} = -3$ or $z = x + x^{-1} = -1$
 $x^{2} + 3x + 1 = 0$ or $x^{2} + x + 1 = 0$
 $x = \frac{-3 \pm \sqrt{5}}{2}$ or $x = \frac{-1 \pm \sqrt{3}i}{2}$

17.
$$x^{3} + 3qx + r = 0$$
 $(r \neq 0) \dots$ (1)
 $\alpha + \beta + \gamma = 0 \dots$ (2) $\alpha\beta + \beta\gamma + \gamma\alpha = 3q \dots$ (3) $\alpha\beta\gamma = -r \dots$ (4)
Put $p(x) = r^{2}(x^{2} + x + 1)^{3} + 27q^{3}x^{2}(x + 1)^{2}$

Tl

Then
$$p\left(\frac{\alpha}{\beta}\right) = r^2 \left(\frac{\alpha^2}{\beta^2} + \frac{\alpha}{\beta} + 1\right)^3 + 27q^3 \frac{\alpha}{\beta^2} \left(\frac{\alpha}{\beta} + 1\right)^2 = r^2 \left(\frac{\alpha^2 + \alpha + 1}{\beta^2}\right)^3 + 27q^3 \frac{\alpha^2}{\beta^2} \frac{(\alpha + \beta)^2}{\beta^2}$$

 $= r^2 \left(\frac{\alpha^3 - \beta^3}{\beta^2(\alpha - \beta)}\right)^3 + 27q^3 \frac{\alpha^2}{\beta^4} (-\gamma)^2 = r^2 \left(\frac{(-3q\alpha + r) + (-3q\beta + r)}{\beta^2(\alpha - \beta)}\right)^3 + 27q^3 \frac{\alpha^2\gamma^2}{\beta^4}$
 $= r^2 \left(\frac{-3q}{\beta^2}\right)^3 + 27q^3 \frac{(\alpha\beta\gamma)^2}{\beta^6} = -\frac{27q^3r^2}{\beta^6} + 27q^3 \frac{(-r)^2}{\beta^6} = 0$
 $\therefore \quad \frac{\alpha}{\beta} \text{ satisfies} \quad p(x) = r^2 (x^2 + x + 1)^3 + 27q^3 x^2 (x + 1)^2 = 0 \qquad \dots (5)$

(a) When q = 0, (1) becomes $x^3 + r = 0$ (6) The roots of (6) are $\sqrt[3]{-r}$, $\sqrt[3]{-r}\omega$, $\sqrt[3]{-r}\omega^2$, where ω is the complex cube roots of unity. Take α be any one of these three roots and β be any other root not equal to α . $\alpha = \omega\beta$ or $\alpha = \omega^2\beta$ Then (7) When q = 0, (5) becomes $x^2 + x + 1 = 0$ $(r \neq 0)$ and the roots are ω, ω^2 . $\therefore \quad \frac{\alpha}{\beta} = \omega \quad \text{or} \quad \frac{\alpha}{\beta} = \omega^2$ (8)

It can be seen that (7) and (8) are the same.

If q = 0, then by (9), r = 0, contradicting to $r \neq 0$.

(b) If
$$4q^3 + r^2 = 0$$
, then $r^2 = -4q^3$ (9)

(9)
$$\downarrow$$
 (5), $p(x) = -4q^3(x^2 + x + 1)^3 + 27q^3x^2(x + 1)^2 = 0$ (10)

$$\therefore \quad q \neq 0 \quad \text{and} \quad (10) \quad \text{becomes} \qquad -4(x^2 + x + 1)^3 + 27x^2(x + 1)^2 = 0$$

$$\Leftrightarrow \quad 4x^6 + 12x^5 - 3x^4 - 26x^3 - 3x^2 + 12x + 4 = 0 \quad \Leftrightarrow \quad (x - 1)^2 (x + 2)^2 (2x + 1)^2 = 0$$
Since $\frac{\alpha}{\beta}$ satisfies (10), $\frac{\alpha}{\beta} = 1 \quad \text{or} \quad -2 \quad \text{or} \quad -\frac{1}{2}$.
(i) If $\frac{\alpha}{\beta} = 1$, then $\alpha = \beta$.
(ii) If $\frac{\alpha}{\beta} = -2$, then $\alpha = -2\beta$. From (1), $-2\beta + \beta + \gamma = 0$, $\beta = \gamma$.
(iii) If $\frac{\alpha}{\beta} = -\frac{1}{2}$, then $\beta = -2\alpha$. From (1), $\alpha - 2\alpha + \gamma = 0$, $\alpha = \gamma$.

In any one of the above cases, there is a double root for (1).

18. (a) A.M. – G.M. : Let x_i (i = 1, 2, ..., n) be n distinct positive numbers, then $\frac{\sum x_i}{n} > \prod x_i$.

(b) $f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_{n-1} x + a_n = 0$ has n distinct positive roots α_i (i = 1, 2, ..., n) Then $\sum \alpha_1 = -a_1$ (1), $\sum \alpha_1 \alpha_2 = a_2$ (2) ,,

$$\sum \alpha_{1} \alpha_{2} \dots \alpha_{n-1} = (-1)^{n-1} a_{n-1} \dots (n-1) \qquad , \qquad \alpha_{1} \alpha_{2} \dots \alpha_{n-1} \alpha_{n} = (-1)^{n} a_{n} \dots (n)$$

Writing
$$a_i = (-1)^i {n \choose i} b_i^{i}$$
, then $a_n = (-1)^n {n \choose n} b_n^{n} = (-1)^n b_n^{n}$ (i)

$$a_{n-1} = \left(-1\right)^{n-1} {n \choose n-1} b_{n-1}^{n-1} = \left(-1\right)^{n-1} n b_{n-1}^{n-1} \qquad \dots \qquad (ii)$$

From (i) and (n), $b_n^{\ n} = \alpha_1 \alpha_2 ... \alpha_{n-1} \alpha_n$ (iii)

From (ii) and (n-1),
$$nb_{n-1}^{n-1} = \sum \alpha_1 \alpha_2 \dots \alpha_{n-1}$$
 (iv)

From (iii),
$$\mathbf{b}_{n} = (\alpha_{1}\alpha_{2}...\alpha_{n-1}\alpha_{n})^{1/n} = \left[(\Pi\alpha_{1}\alpha_{2}...\alpha_{n-1})^{\frac{1}{n-1}} \right]^{\frac{1}{n}} = \left[(\Pi\alpha_{1}\alpha_{2}...\alpha_{n-1})^{\frac{1}{n}} \right]^{\frac{1}{n-1}}$$

$$< \left[\frac{\sum \alpha_{1} \alpha_{2} ... \alpha_{n-1}}{n}\right]^{\frac{1}{n-1}} < \left[b_{n-1}^{n-1}\right]^{\frac{1}{n-1}} = b_{n-1} \qquad \dots \qquad (v)$$

$$f'(x) \equiv nx^{n-1} + (n-1)x^{n-2} + \dots + 2a_{n-2}x + a_{n-1} = n\left[x^{n-1} + (\frac{n-1}{n})x^{n-2} + \dots + \frac{2}{n}a_{n-2}x + \frac{1}{n}a_{n-1}\right]$$

Consider f'(x) = 0.

Since f(x) = 0 has n distinct positive real roots and between any two roots of f(x) = 0, there is at least one real root of f'(x) = 0, where deg f'(x) = n - 1. \therefore f'(x) = 0 has (n - 1) distinct positive real roots, each lying between two roots of f(x) = 0.

Let
$$\beta_1, \beta_2, ..., \beta_{n-1}$$
 be the $(n-1)$ distinct positive real roots, reach lying between two roots of $f'(x) = 0$
 $\sum \beta_1 \beta_2 ... \beta_{n-2} = (-1)^{n-2} \frac{2}{n} a_{n-2} = (-1)^{n-2} \frac{2}{n} \left[(-1)^{n-2} \binom{n}{n-2} b_{n-2}^{n-2} \right] = \frac{2}{n} \frac{n(n-1)}{2} b_{n-2}^{n-2} = (n-1) b_{n-2}^{n-2}$

$$\sum p_1 p_2 \dots p_{n-2} - (-1) = \frac{1}{n} a_{n-2} - (-1) = \frac{1}{n} \left[(-1) = \left(n-2 \right)^{O_{n-2}} \right] - \frac{1}{n} \frac{1}{2} = \frac{1}{n} \frac{1}{2} a_{n-2} = (n-1)^{O_{n-2}} \dots$$
(vi)

$$< \left[\frac{\sum \beta_{1}\beta_{2}...\beta_{n-2}}{n-1}\right]^{\frac{1}{n-2}} = \left[\frac{(n-1)b_{n-2}^{n-2}}{n-1}\right]^{\frac{1}{n-2}} = b_{n-2} \qquad \dots \quad (viii)$$

Similarly, by considering $f''(x) = f''(x) = f^{(n-2)}(x)$, we get correspondingly.

 $\begin{array}{ll} Similarly, by \ considering \quad f''(x), \ f'''(x), \ \ldots, \ f^{(n-2)}(x), & we \ get \ correspondingly, \\ b_{n-2} > b_{n-3}, \quad b_{n-3} > b_{n-4} \ , & \ldots \ , & b_2 > b_1 \ , \end{array}$

Combining all these inequalities, we have $b_1 > b_2 > ... > b_{n-1} > b_n$.